CHRONIC TOXICITY SUMMARY # **XYLENES** (Xylol or commercial xylenes (mixture of 60-70% m- and remaining percentage is mix of o- and p-xylenes), technical grade xylenes or mixed xylenes (20% o-xylene, 40% m-xylene, 20% p-xylene, 20% ethyl benzene, and traces of toluene and C9 aromatics), o-xylene (1,2-dimethylbenzene or 2-xylene), m-xylene (1,3-dimethylbenzene or 3-xylene), p-xylene (1,4-dimethylbenzene or 4-xylene), also noted as methyltoluene, benzene-dimethyl, dimethylbenzene) CAS Registry Numbers.: 1330-20-7 (technical mixture of o-, p-, and m-xylene); 95-47-6 (o-xylene); 108-38-3 (m-xylene); 106-42-3 (p-xylene) ### I. Chronic Toxicity Summary Inhalation reference exposure level 700 μg/m³ (200 ppb) (for technical or mixed xylenes or sum of individual isomers of xylene) Critical effect(s) CNS effects in humans; irritation of the eyes, nose, and throat Hazard index target(s) Nervous system; respiratory system # II. Physical and Chemical Properties (ATSDR, 1995; HSDB, 1995; CRC, 1994) Description Colorless liquid Molecular formula C_8H_{10} Molecular weight 106.16 g/mol Density 0.864 g/cm³ @ 20°C(technical mixture); 0.881 (o-); 0.860 (m-); 0.861 (p-) Boiling point 137-140°C @ 760 torr (technical mixture); 144.5 °C (o-); 139.1°C (m-); 138.3 °C (p-) Melting point -25.2 °C (o-); -47.8 °C (m-); +13.2 °C (p-) Vapor pressure 6.6 torr (o-); 8.39 torr (m-); 8.87 torr (p-) all @ 25°C. Solubility Practically insoluble in water; miscible with absolute alcohol, ether and many other organic solvents Conversion factor 1 ppb = $4.34 \mu g/m^3$ # III. Major Uses or Sources Mixtures of o-, p-, and m-xylenes are extensively used in the chemical industry as solvents for products including paints, inks, dyes, adhesives, pharmaceuticals, and detergents (HSDB, 1995). In the petroleum industry xylenes are used as antiknock agents in gasoline, and as an intermediate in synthetic reactions. Of the three isomers, p-xylene is produced in the highest quantities in the U.S. for use in the synthesis of phthalic, isophthalic, and terephthalic acid used in manufacture of plastics and polymer fibers including mylar and dacron. In 1996, the latest year tabulated, the statewide mean outdoor monitored concentration of meta/para-xylene was approximately 1 ppb (CARB, 1999a). The annual statewide emissions from facilities reporting under the Air Toxics Hot Spots Act in California based on the most recent inventory were estimated to be 3,568,318 pounds of xylenes (CARB, 1999b). Also reported were speciated emissions of p-xylene - 51,203 pounds, of o-xylene - 34,573 pounds, and of m-xylene - 30,440 pounds. (Xylenes are also present in motor vehicle exhaust.) ## IV. Effects of Human Exposure Information on the toxicity of xylenes to humans is almost exclusively limited to case reports of acute exposures and studies of occupational exposures in which persons often inhaled a mixture of hydrocarbon solvents 8 hours per day, 5-6 days per week. These studies often have incomplete information on the airborne concentrations of xylene and other hydrocarbons. One study examining chronic effects in humans from inhalation of predominantly mixed xylenes was identified (Uchida *et al.*, 1993) and one 4-week controlled exposure study examining the effects of p-xylene exclusively was identified (Hake *et al.*, 1981). No studies examining the chronic effects of oral or dermal xylene exposure in humans were identified. Pharmacokinetic studies have documented the absorption of xylene in humans through inhalation, oral, and dermal routes of exposure. Approximately 60% of inspired xylene is retained systemically (Sedivec and Flek, 1979). The majority of ingested xylene (~90%) is absorbed into the systemic circulation (ATSDR, 1995). Xylene is also absorbed dermally; the rate of absorption of xylene vapor is estimated as 0.1-0.2% of that by inhalation (Riihimaki and Pfaffli, 1978). Loizou *et al.* (1999) exposed human volunteers to 50 ppm m-xylene for 4 hours and determined that the dermal route of exposure contributed 1.8% of the total body burden. Measurement of the rate of absorption through direct contact with the skin produced variable results ranging from 2 μ g/cm²/min (Engstrom *et al.*, 1977) to 75-160 μ g/cm²/min (Dutkiewicz and Tyras, 1968). Xylene exposure has been associated with effects in a number of organ systems including the lungs, skin and eyes; neurological system; heart and gastrointestinal system; kidney; and possibly the reproductive system. Pulmonary effects have been documented in occupational exposures to undetermined concentrations of mixed xylenes (and other solvents) and include labored breathing and impaired pulmonary function (Hipolito 1980; Roberts *et al.*, 1988). High levels of xylene exposure for short periods are associated with irritation of the skin, eyes, nose and throat (ATSDR, 1995). Chronic exposure to xylenes has been associated with eye and nasal irritation (Uchida *et al.*, 1993). The central nervous system is affected by both short term and long term exposure to high concentrations of xylene. Levels of 100-200 ppm are associated with nausea and headache; 200-500 ppm with dizziness, irritability, weakness, vomiting, and slowed reaction time; 800-10,000 ppm with lack of muscle coordination, giddiness, confusion, ringing in the ears, and changes in sense of balance; and >10,000 ppm with loss of consciousness (HESIS, 1986). Other documented neurological effects include impaired short term memory, impaired reaction time, performance decrements in numerical ability, and impaired equilibrium (dizziness) and balance (Carpenter *et al.*, 1975; Dudek *et al.*, 1990; Gamberale *et al.*, 1978; Riihimaki and Savolainen, 1980; Savolainen and Linnavuo, 1979; Savolainen and Riihimaki 1981; Savolainen *et al.*, 1979; 1984; 1985). Chronic exposure to xylenes (with other hydrocarbons) has been associated with cardiovascular and gastrointestinal effects. Heart palpitations, chest pain, and abnormal electrocardiogram were noted (Hipolito, 1980; Kilburn *et al.*, 1985) as were effects on the gastrointestinal system producing nausea, vomiting and gastric discomfort in exposed workers (Goldie, 1960; Hipolito, 1980; Uchida *et al.*, 1993; Klaucke *et al.*, 1982; Nersesian *et al.*, 1985). Results of studies of renal effects of xylene are mixed and come from case reports and occupational studies where multiple chemical exposures are common. The effects from subchronic exposure documented by Hake *et al.* (1981) and from chronic exposure documented by Uchida *et al.* (1993) did not include renal effects. However, Morley *et al.* (1970) found increased BUN and decreased creatinine clearance; Martinez *et al.* (1989) found distal renal tubular acidemia; Franchini *et al.* (1983) found increased levels of urinary β-glucuronidase; and Askergren (1981, 1982) found increased urinary excretion of albumin, erythrocytes, and leukocytes. Reproductive effects were documented by Taskinen *et al.* (1994) who found increased incidence of spontaneous abortions in 37 pathology and histology workers exposed to xylene and formaldehyde in the work place. The multiple chemical exposures and the small number of subjects in this study limit the conclusions that can be drawn as to reproductive effects of xylene in humans. No hematological effects have been identified in studies where exposure was to xylene only. Previous studies identifying hematological effects included known or suspected exposure to benzene (ATSDR, 1995; ECETOC, 1986). One series of case reports identified lowered white cell counts in two women with chronic occupational exposure to xylene (Hipolito, 1980; Moszczynsky and Lisiewicz, 1983; 1984), although they may also have had multiple chemical exposures. Groups of male volunteers (1 to 4 subjects/group) were exposed to p-xylene in a controlled-environment chamber for 7.5, 3, or 1 hr/day, 5 days/week for 4-weeks (Hake *et al.*, 1981). The p-xylene concentration was changed on a weekly basis starting at 100 ppm the first week, followed by 20 ppm, 150 ppm, and 100 ppm (average, with a range of 50 to 150 ppm) over subsequent weeks. In addition, groups of female volunteers (2 or 3/group) were exposed to 100 ppm p-xylene for 7.5, 3, or 1 hr/day for 5 days. The volunteers acted as their own controls, with exposure to 0 ppm p-xylene occurring for two days (males) or one day (females) the week before and the week after the xylene exposures. No serious subjective or objective health responses, including neurological tests, cognitive tests and cardiopulmonary function tests were observed. Odor was noted, but the intensity decreased usually within the first hour of exposure. The authors concluded that p-xylene may have a weak irritating effect on the soft tissues starting at 100 ppm, but overall, the small sample size and high variability among the volunteers made all results difficult to interpret. The Uchida et al. (1993) study included a relatively large number of workers studied, exposure for an average of 7 years to xylenes predominately and a comprehensive set of medical examinations to document potential effects. A survey of 994 Chinese workers involved in the production of rubber boots, plastic coated wire and printing processes employing xylene solvents was carried out. The survey consisted of fitting individual workers with diffusive samplers for an 8 hour shift. At the end of the 8 hour shift the samplers were recovered for analysis of solvent exposure, and urine samples were collected for analysis of xylene metabolites. The following day workers answered a questionnaire concerning subjective symptoms, and blood and urine were collected for analysis. Out of this group of xylene-exposed workers, 175 individuals (107 men and 68 women) were selected for further study and analysis based on completion of their health examinations and on results from diffusive samplers showing that xylene constituted 70% or more of that individual's exposure to solvents in the workplace. The control population consisted of 241 (116 men and 125 women) unexposed workers from the same factories or other factories in the same region, of similar age distribution, of similar time in this occupation (average of 7 years), and having a similar distribution of alcohol consumption and cigarette usage. The xylene-exposed and unexposed groups were given health examinations which evaluated hematology (red, white, and platelet cell counts, and hemoglobin concentration), serum biochemistry (albumin concentration, total bilirubin concentration, aspartate aminotransferase, alanine aminotransferase, gamma-glutamyl transferase, alkaline phosphatase, leucine aminopeptidase, lactate dehydrogenase, amylase, blood urea nitrogen, creatinine), and subjective symptoms (survey of symptoms occurring during work and in the previous three months). Results of analysis of the diffusive samplers showed that workers were exposed to a geometric mean of 14.2 ± 2.6 ppm xylene (arithmetic mean of 21.3 ± 21.6 ppm). This was broken down into geometric means of 1.2 ppm o-xylene, 7.3 ppm m-xylene, 3.8 ppm p-xylene, 3.4 ppm ethyl benzene, and 1.2 ppm toluene. N-Hexane was rarely present and no benzene was detected. Analysis of data from the health examinations found no statistically significant difference (p<0.10) between hematology and serum biochemistry values for xylene-exposed and unexposed populations. The frequency of an elevated ratio of aspartate aminotransferase to alanine transferase and of elevated ratio of alkaline phosphatase to leucine aminopeptidase was significantly (p<0.01) higher in exposed men than in the control population of men. Results of the survey of subjective symptoms found differences in symptoms occurring during work and during a similar analysis over the preceding three month period, apparently related to effects on the central nervous system and to local effects on the eyes, nose and throat. The frequency of five symptoms experienced during work was significantly (p<0.01) elevated in either xylene-exposed men or women including: dimmed vision, unusual taste, dizziness, heavy feeling in the head, and headache. The frequency of four symptoms experienced during work were significantly (p<0.01) elevated in both men and women including irritation in the eyes, nasal irritation, sore throat, and floating sensation. Ten subjective symptoms occurring in the previous three months were significantly (p<0.01) elevated in exposed men and women including nausea, nightmare, anxiety, forgetfulness, inability to concentrate, fainting after suddenly standing up, poor appetite, reduced grasping power, reduced muscle power in the extremities, and rough skin. Dose dependency appeared to exist for 3 subjective symptoms noted during work: irritation in the eyes, sore throat, floating sensation, and for one symptom occurring in the last three months, poor appetite. ## V. Effects of Animal Exposure A limited number of chronic toxicity studies are available for xylene including two inhalation studies with o-xylene (Tatrai *et al.*, 1981; Jenkins *et al.*, 1970) and one oral chronic study with mixed xylenes (NTP, 1986). No chronic dermal studies could be identified. A spectrum of adverse effects has been documented in shorter term studies which potentially could occur with chronic exposure. These studies are presented here along with a brief description of the three chronic studies identified. Xylene affects a number of organ systems including the pulmonary system, the cardiovascular system, the gastrointestinal system, the hepatic system, the renal system, the dermis, and the eye, and it has numerous neurological effects and developmental effects. Animal data are consistent with human data in documenting respiratory effects from xylene exposure. Acute and subacute exposures in mice, rats, and guinea pigs have been associated with decreased metabolic capacity of the lungs; decreased respiratory rate; labored breathing; irritation of the respiratory tract; pulmonary edema; and pulmonary inflammation (Carpenter *et al.*, 1975; De Ceaurriz *et al.*, 1981; Elovaara *et al.*, 1987; 1989; Furnas and Hine, 1958; Korsak *et al.*, 1988; 1990; Patel *et al.*, 1978; Silverman and Schatz, 1991; Toftgard and Nilsen, 1982). Limited evidence is available in animal studies for cardiovascular effects resulting from xylene exposure. Morvai *et al.* (1976; 1987) conducted two studies. The first study observed rats following acute and intermediate duration inhalation exposure to very high (unspecified) levels of xylene and recorded ventricular repolarization disturbances, atrial fibrillation, arrhythmias, occasional cardiac arrest and changes in electrocardiogram (Morvai *et al.*, 1976). In a subsequent study morphological changes in coronary microvessels were seen in rats exposed to 230 ppm xylene (isomer composition unspecified) (Morvai *et al.*, 1987). However the chronic toxicity studies conducted by the National Toxicology Program (NTP, 1986) and by Jenkins *et al.* (1970), as well as other shorter term studies (Carpenter *et al.*, 1975; Wolfe, 1988), have not identified histopathological lesions of the heart. Studies identifying adverse gastrointestinal effects, hematological effects, or musculoskeletal effects in animals were not identified. Studies reporting no hematological effects include Carpenter *et al.* (1975) (rats exposed to 810 ppm of mixed xylenes for 10 weeks, 5 days/week, 6 hours/day and dogs exposed for 13 weeks to 810 ppm mixed xylenes, 5 days/week, 6 hours/day) and Jenkins *et al.* (1970) (rats, guinea pigs and dogs exposed for 6 weeks to 780 ppm o-xylene, 5 days/week, 8 hours per day). Carpenter *et al.* (1975) and the NTP (1986) reported no effects on the musculoskeletal system. Hepatic effects have been documented after acute exposure to high concentrations of xylene (2,000 ppm) or subacute exposure to lower concentrations (345-800 ppm) of mixed xylene or individual isomers. These effects include increased cytochrome P-450 and b5 content, increased hepatic weight, increased liver to body weight ratios, decreased hepatic glycogen, proliferation of endoplasmic reticulum, changes in distribution of hepatocellular nuclei, and liver degeneration (Bowers *et al.*, 1982; Condie *et al.*, 1988; Elovaara, 1982; Elovaara *et al.*, 1980; Muralidhara and Krishnakumari 1980; Patel *et al.*, 1979; Pyykko 1980; Tatrai and Ungvary, 1980; Tatrai *et al.*, 1981; Toftgard and Nilsen, 1981; 1982; Toftgard *et al.*, 1981; Ungvary *et al.*, 1980). Renal effects have been identified in studies with rats, guinea pigs, dogs, and monkeys exposed to 50-2,000 ppm of xylenes. These effects include increased cytochrome P-450 content and increased kidney to body weight ratios (Condie *et al.*, 1988; Elovaara 1982; Toftgard and Nilsen, 1982). Condie *et al.* (1988) also noted tubular dilation, atrophy, and increased hyaline droplets in the kidney of Sprague-Dawley rats administered 150 mg/kg/day orally of mixed xylenes. This response is consistent with early nephropathy. Xylene has been found to affect the dermis and eyes of animals. Hine and Zuidema (1970) found skin erythema and edema, epidermal thickening, and eschar formation in response to xylene exposure. Direct instillation of xylenes into the eyes of rabbits produces eye irritation (Hine and Zuidema, 1970; Smyth *et al.*, 1962) Numerous neurological effects have been documented in response to acute and subchronic xylene exposures ranging from 100 to 2,000 ppm. This is consistent with effects on neurofunction documented in humans. These effects include narcosis, prostration, incoordination, tremors, muscular spasms, labored respiration, behavioral changes, hyperactivity, elevated auditory thresholds, hearing loss, and changes in brain biochemistry (Andersson *et al.*, 1981; Carpenter *et al.*, 1975; De Ceaurriz *et al.*, 1983; Furnas and Hine, 1958; Ghosh *et al.*, 1987; Gralewicz *et al.*, 1995; Kyrklund *et al.*, 1987; Molnar *et al.*, 1986; NTP, 1986; Pryor *et al.*, 1987; Rank 1985; Rosengren *et al.*, 1986; Savolainen and Seppalainen, 1979; Savolainen *et al.*, 1978; 1979a; Wimolwattanapun *et al.*, 1987). Developmental effects have been documented in pregnant animals exposed to xylenes. ATSDR (1995) concluded that the body of information available for developmental effects is consistent with the hypothesis that xylene is fetotoxic and many of the fetotoxic responses are secondary to maternal toxicity. However, the ATSDR also observed that there was a large variation in the concentrations of xylene producing developmental effects and of those producing no developmental effects. The ATSDR thought that these differences were influenced by a number of factors (strain and species of animal, purity of xylene, method of exposure, exposure pattern and duration, etc.). The two most common test species have been the rat and the mouse. With respect to rats, Mirkova *et al.* (1983) exposed groups of pregnant rats (unspecified strain of white rats) to clean air or 2.3, 12, or 120 ppm of xylene (unspecified composition) for 6 h/day on days 1-21 of gestation. They reported increased postimplantation losses and fetotoxicity (reduced fetal weights) as well as a statistically increased incidence of visceral abnormalities (including ossification defects in bones of the skull) at xylene air concentrations of 12 ppm and above. The ATSDR has suggested that the Mirkova *et al.* (1983) study results may have been influenced by poor animal husbandry as indicated by the low conception rates and the high incidence of fetal hemorrhages seen in the controls. Hass and Jakobsen (1993) attempted to replicate the findings of Mirkova *et al.* (1983). Hass and Jakobsen (1993) exposed groups of 36 pregnant Wistar rats to clean air or 200 ppm of xylene for 6 h/day on days 4-20 of gestation. Unlike Mirakova *et al.* (1983), there was no sign of maternal toxicity and no decrease in fetal weights and no increase in soft-tissue or skeletal malformations. A large increase in the incidence of delayed ossification of the *os maxillare* of the skull, however, was observed (53% of experimental fetuses as opposed to 2% of the controls). Potential neurological/muscular changes measured as performance on a rotorod were also noted upon testing of 2-day-old rat pups. Ungvary et al. (1985) exposed CFY rats by inhalation to air concentrations of xylene (60 ppm, 440 ppm, 800 ppm) for 24 h/day on days 7-15 of gestation. Maternal toxicity was described as moderate and dosedependent. They observed weight retarded fetuses at all air concentrations. However, there was no increase in malformations, and an increase in minor anomalies and resorbed fetuses occurred only at the highest concentration. In a separate study investigating the interactions between solvents and other agents, Ungvary (1985) exposed CFY rats to either 140 ppm or 440 ppm of xylene on days 10-13 of gestation and also reported increases for either condition in weight retarded and skeletal retarded fetuses without any increase in malformations. Hudak and Ungvary (1978) had earlier examined the effect of 230 ppm xylene (24 h/day, days 9-14 of pregnancy) in the CFY rat and reported effects on skeletal development (e.g., fused sternebrae). In contrast to the other Ungvary findings, no effect on fetal weight was observed. Bio/dynamics (1983) conducted an inhalation exposure study in the rat (CrL-CD (SD) BR strain). Rats were exposed 6 h/day during premating, mating, gestation and lactation. Exposure concentrations were 0, 60, 250, and 500 ppm. Most measures for adverse effects on fetal development were not significantly increased. Mean fetal weights at the highest exposure level were lower than controls, but this difference was significant only for the female fetuses. These depressed weights were, however, still significant on day 21 of lactation. Other adverse effects (such as increased soft tissue and skeletal abnormalities, increased fetal resorptions) were not increased significantly at any of the test concentrations. Ungvary *et al.* (1980a) tested by inhalation the individual ortho, meta, and para isomers of xylene in the CFY rat. Pregnant rats were exposed 24 h/day on days 7 –14 of pregnancy to 35, 350, or 700 ppm of each isomer. An increased incidence of weight retarded fetuses was observed for each isomer at the 700 ppm level, and for the ortho isomer at the 350 ppm level. Post implantation losses were increased only at the 700 ppm level in the para-xylene exposed group. Skeletal anomalies were increased only at the 700 ppm level for the meta and para isomers of xylene. Rosen *et al.* (1986) evaluated the effects of prenatal exposure to para-xylene in the rat. They exposed pregnant Sprague-Dawley rats by inhalation to either 800 ppm or 1600 ppm of p-xylene from days 7-16 of gestation. Despite the high concentrations, no effects were seen on litter size or weight at birth or on the subsequent growth rates of the pups. Hass *et al.* (1995) examined postnatal development and neurobehavioral effects in rats following prenatal exposure to 0 or 500 ppm technical xylene 6 hr/day on gestation days 7-20 of pregnancy. Xylene exposure caused no signs of maternal toxicity and no difference in the number of live or dead fetuses. The mean birth weight in exposed litters was about 5% lower compared to control litters but the difference was not statistically significant. Body weights were similar between groups during the preweaning and postweaning period but lower absolute brain weights were observed in exposed animals. Exposed offspring showed a delay in the ontogeny of the air righting reflex and exhibited impaired performance in behavioral tests for neuromotor abilities (Rotorod) and for learning and memory (Morris water maze). In a follow-up study under the same exposure conditions, exposed offspring exhibited impaired performances in the Morris water maze at 16, 28, and 55 weeks of age, although the difference was not statistically significant at 55 weeks (Hass *et al.*, 1997). These data indicate that xylene exposure during development may cause long-lasting deficits on learning and memory in offspring. With respect to mice, Ungvary *et al.* (1985) exposed CFLP mice by inhalation to air concentrations of xylene (120 ppm, 230 ppm) for 24 h/day on days 7-15 of gestation. In the mouse, they observed increased incidences of weight-retarded fetuses and increased skeletal retarded fetuses at 230 ppm. Shigeta *et al.* (1983) exposed pregnant ICR mice to approximately 0, 120, 230, 460, and 920 ppm of xylene in an exposure chamber for 6 h/day on days 6-12 of gestation. Shigeta *et al.* (1983) reported significant decreases in fetal weight in the 460 ppm and 920 ppm dose groups only. There was no difference in the number of live or dead fetuses. Decreased weight gains and delayed development of body hair and teeth were observed at the 920 ppm exposure level. Dose-response relations were reported for delayed ossification of the sternebrae. Marks *et al.* (1982) noted that 2060 mg/kg/day of mixed xylene administered orally is associated with cleft palate and decreased fetal weight in the mouse. Ungvary *et al.* (1985) also tested the individual ortho, meta, and para isomers of xylene at 120 ppm in the CFLP mouse. Each isomer of xylene also increased the incidence of weight-retarded fetuses and skeletal retarded fetuses at 120 ppm. There was no increase in malformations. Of the three chronic studies available (Tatrai et al., 1981; Jenkins et al., 1970; NTP 1986) none comprehensively examined systemic effects. The study by Tatrai et al. (1981) exposed rats for one year, 7 days/week, 8 hours per day to 1096 ppm o-xylene. This exposure was a LOAEL for body weight gain in males and a NOAEL for hepatic effects in male rats. Jenkins et al. (1970) exposed rats, guinea pigs, squirrel monkeys, and beagle dogs for 90-127 days continuously to 78 ppm of o-xylene. The study examined body weight gain; hematological parameters including white cell counts, red blood cell counts, and hematocrit; serum biochemistry including bromosulfophthalein retention, blood urea nitrogen, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and creatinine and liver function including alkaline phosphatase, tyrosine aminotransferase, and total lipids. No effects were observed in any of the parameters examined in this study. This study found a NOAEL for all effects examined of 78 ppm o-xylene. The NTP (1986) study administered 0, 250, or 500 mg/kg/day doses of mixed xylene in corn oil by gavage 5 days/week for 103 weeks to groups of F344/N rats of both sexes, 50 animals per group. B6C3F1 mice were treated in a similar manner but given 0, 500 or 1000 mg/kg/day of mixed xylenes in corn oil by gavage. A complete histopathological examination of all tissues was made as well as determination of body weight gain. Based on histopathology of all organ systems, a NOAEL of 500 mg/kg/day was observed for rats and a NOAEL of 1000 mg/kg/day was observed for mice. ### VI. Derivation of Chronic Reference Exposure Level (REL) Uchida et al. (1993) Study Study population 175 xylene-exposed factory workers and control population of 241 factory workers Exposure method Inhalation Critical Effects Dose related increase in the prevalence of eye irritation, sore throat, floating sensation, and poor appetite. 14.2 ppm (geometric mean of exposure concentrations) **LOAEL** NOAEL Not applicable 8 hr/d (10 m³/day occupational inhalation rate), 5 d/wk Exposure continuity Occupational exposure for an average of 7 years Exposure duration Average occupational exposure 5.1 ppm for LOAEL group (14.2 x 10/20 x 5/7) 5.1 ppm for LOAEL group *Human equivalent concentration* LOAEL uncertainty factor 3 Subchronic uncertainty factor 1 Interspecies uncertainty factor 1 *Intraspecies uncertainty factor* 10 Cumulative uncertainty factor Inhalation reference exposure level $0.2 \text{ ppm } (200 \text{ ppb}; 0.7 \text{ mg/m}^3; 700 \mu\text{g/m}^3) \text{ for mixed}$ xylenes or for total of individual isomers A number of issues are important in considering the uncertainty associated with this REL. For ATSDR (1995), the animal and human toxicity data suggest that mixed xylenes and the different xylene isomers produce similar effects, although different isomers are not equal in potency for producing a given effect. Therefore exposure of workers to a mix of xylenes in the Uchida *et al.* (1993) study would be expected to generate a similar spectrum of responses as exposure to single isomers, however the intensity of particular effects could be different. The use of a neurological endpoint for derivation of a REL is supported by the large number of inhalation and oral studies, which associate neurological effects with xylene exposure. ATSDR (1995) indicates that neurological effects are a sensitive endpoint. The observation that floating sensation is apparently related to dose further supports the concept that this subjective symptom related to neurological effects was due to xylene exposure. A UF of 3, rather than 10, was applied for the LOAEL to NOAEL extrapolation due to the generally mild adverse effects observed and the principally low incidence (<50%) of the effects. A factor of 1 was used for subchronic uncertainty. Although the average occupational exposure was only 7 years, there were 176 xylene-exposed workers of average age 29.7 ± 9.0 years (arithmetic mean \pm SD) for whom, according to the report, there had been essentially no change in workplace in their working life. Thus, many workers would likely have been exposed for more than 8.4 years, the cut-off point for chronic human exposure. Another issue is the use of diffusive samplers in the Uchida *et al.* (1993) study. These samplers provide a time weighted average concentration of hydrocarbon and cannot indicate the maximum concentrations a worker is exposed to. It is unknown whether peak concentrations alter the response to xylenes in humans. For comparison with the proposed REL of 200 ppb based on human studies, (1) the free-standing NOAEL of 78 ppm o-xylene obtained by Jenkins *et al.* (1970) in rats and guinea pigs continuously exposed for 90 days was used to estimate a REL based on animal data. Use of an RGDR of 1, a subchronic UF of 3, an interspecies UF of 3, and an intraspecies UF of 10 results in a REL of 800 ppb for o-xylene for systemic effects. (2) Tatrai *et al.* (1981) found a free standing LOAEL of 1096 ppm o-xylene for body weight gain in male rats exposed every day for 8 hours. Time adjustment to continuous exposure and use of an RGDR of 1, a LOAEL UF of 3 for a mild effect, an interspecies UF of 3, and an intraspecies UF of 10 result in a REL of 4000 ppb. (3) Ungvary *et al.* (1985) exposed mice by inhalation continuously to 120 ppm or 230 ppm xylene for 24 h/day on days 7-15 of gestation. The LOAEL was 230 ppm and the NOAEL was 120 ppm. No time adjustment is needed. Use of an RGDR of 1, a subchronic UF of 1, an interspecies UF of 3, and an intraspecies UF of 10 results in a REL of 4000 ppb for xylene for developmental effects. # VII. Data Strengths and Limitations for Development of the REL The strengths of the inhalation REL for xylene include the use of human exposure data from 175 workers exposed over a period of years. Major areas of uncertainty are the uncertainty in estimating exposure, the potential variability in exposure concentration, and the lack of observation of a NOAEL in the key study. #### VIII. References ATSDR. 1995. Agency for Toxic Substances and Disease Registry. Toxicological Profile for Xylenes (Update). Atlanta, GA: ATSDR. U.S. Printing Office 1995-639-298. Andersson K, Fuxe K, Nilsen OG, Toftgard R, Eneroth P, Gustafsson JA. 1981. Production of discrete changes in dopamine and noradrenaline levels and turnover in various parts of the rat brain following exposure to xylene, ortho-, meta-, and para-xylene, and ethylbenzene. Toxicol. Appl. Pharmacol. 60:535-548. Askergren A. 1981. Studies on kidney function in subjects exposed to organic solvents: III. Excretion of cells in the urine. Acta Med. Scand. 210:103-106. Askergren A. 1982. Organic solvents and kidney function. In: Mehlman MA, ed. Advances in Modern Environmental Toxicology. Vol. 2. Princeton Junction, NJ: Senate Press. Pp. 157-172. Bio/dynamics Inc. 1983. Parental and fetal reproduction inhalation toxicity study in rats with mixed xylenes. Prepared for the American Petroleum Institute, Health and Environmental Services Department. HESD Publ. No. 31-31481. Bowers DJ, Cannon MS, and Jones DH. 1982. Ultrastructural changes in livers of young and aging rats exposed to methylated benzenes. Am. J. Vet. Res. 43:679-683. CARB. 1999a. California Air Resources Board. Toxics Air Quality Data. Substance Chooser. Meta/para-Xylene. Available online at http://www.arb.ca.gov/aqd/toxics.htm CARB. 1999b. Air toxics emissions data collected in the Air Toxics Hot Spots Program CEIDARS Database as of January 29, 1999. Carpenter CP, Kinkead ER, Geary DJ Jr, Sullivan LJ, King JM. 1975. Petroleum hydrocarbon toxicity studies: V. Animal and human response to vapors of mixed xylenes. Toxicol. Appl. Pharmacol. 33:543-558. CRC. 1994. CRC Handbook of Chemistry and Physics, 75th edition. Lide DR, ed. Boca Raton, FL: CRC Press Inc. Condie LW, Hill JR, Borzelleca JF. 1988. Oral toxicology studies with xylene isomers and mixed xylenes. Drug Chem. Toxicol. 11. 329-354. De Ceaurriz JC, Micillino JC, Bonnet P, Guenier JP. 1981. Sensory irritation caused by various industrial airborne chemicals. Toxicol. Lett. 9:137-143. De Ceaurriz J, Desiles JP, Bonnet P. Marignac B, Muller J, Guenier JP. 1983. Concentration-dependent behavioral changes in mice following short-term inhalation exposure to various industrial solvents. Toxicol. Appl. Pharmacol. 67:383-389. Dudek B, Gralewicz K, Jakubowski M, Kostrzewski P, Sokal J. 1990. Neurobehavioral effects of experimental exposure to toluene, xylene and their mixture. Pol. J. Occup. Med. 3:109-116. Dutkiewicz T, and Tyras H. 1968. Skin absorption of toluene, styrene, and xylene by man. Br. J. Ind. Med. 25:243. ECETOC. 1986. European Chemical Industry Ecology and Toxicology Centre. Joint assessment of commodity chemicals: No 6. Xylenes. Brussels, Belgium: ECETOC. Elovaara E. 1982. Dose-related effects of m-xylene inhalation on the xenobiotic metabolism of the rat. Xenobiotica 12:345-352. Elovaara E, Collan Y, Pfaffli P, Vainio H. 1980. The combined toxicity of technical grade xylene and ethanol in the rat. Xenobiotica 10:435-445. Elovaara E, Zitting A, Nickels J, Aitio A. 1987. m-Xylene inhalation destroys cytochrome P-450 in rat lung at low exposure. Arch. Toxicol. 61:21-26. Elovaara E, Engstrom K, Hayri L, Hase T, Aitio A. 1989. Metabolism of antipyrine and m-xylene in rats after prolonged pretreatment with xylene alone or xylene with ethanol, phenobarbital, or 3-methylcholanthrene. Xenobiotica 19:945-960. Engstrom K, Husman K, and Riihimaki V. 1977. Percutaneous absorption of m-xylene in man. Int. Arch. Occup. Environ. Health 39:181-189. Franchini I, Cavatorta A, Falzoi M, Lucertini S, Mutti A. 1983. Early indicators of renal damage in workers exposed to organic solvents. Int. Arch. Occup. Environ. Health 52:1-9. Furnas DW, and Hine CH. 1958. Neurotoxicity of some selected hydrocarbons. Arch. Ind. Health 18:9-15. Gamberale F, Annwall G, and Hultengren M. 1978. Exposure to xylene and ethylbenzene: III. Effects on central nervous functions. Scand. J. Work Environ. Health 4:204-211. Ghosh TK, Copeland RJ, Parui RN, Mookherjee S, Pradhan SN. 1987. Effects of xylene inhalation on fixed-ratio responding in rats. Pharmacol. Biochem. Behav. 27:653-657. Goldie I. 1960. Can xylene (xylol) provoke convulsive seizures? Ind. Med. Surg. 29:33-35. Gralewicz S, Wiaderna D, and Tomas T. 1995. Development of spontaneous, age-related nonconvulsive seizure electrocortical activity and radial-maze learning after exposure to m-xylene in rats. Int. J. Occup. Med. Environ. Health 8:347-360. Hake CLR, Stewart RD, Wu A, *et al.* 1981. p-Xylene: Development of a biological standard for the industrial worker. Report to the National Institute for Occupational Safety and Health, Cincinnati, OH, by the Medical College of Wisconsin, Inc., Milwaukee, WI. PB82-152844. Hass U, and Jakobsen BM. 1993. Prenatal toxicity of xylene inhalation in the rat: A teratogenicity and postnatal study. Pharmacol. Toxicol. 73:20-23. Hass U, Lund SP, Simonsen L, and Fries AS. 1995. Effects of prenatal exposure to xylene on postnatal development and behavior in rats. Neurotoxicol. Teratol. 17(3):341-349. Hass U, Lund SP, and Simonsen L. 1997. Long-lasting neurobehavioral effects of prenatal exposure to xylene in rats. Neurotoxicol. 18(2):547-552. HESIS. 1986. Hazard Evaluation System and Information Service, Fact Sheet #7, Xylene. State of California, Department of Health Services, Department of Industrial Relations, CAL/OSHA. 2151 Berkeley Way, Berkeley CA 94704. Hine CH, and Zuidema HH. 1970. The toxicological properties of hydrocarbon solvents. Ind. Med. 39:39-44. Hipolito RN. 1980. Xylene poisoning in laboratory workers: Case reports and discussion. Lab. Med. 11:593-595. HSDB. 1995. Hazardous Substances Data Bank. On-line data base. Xylenes. Micromedex, Inc. Vol. 25. Hudak A, and Ungvary G. 1978. Embryotoxic effects of benzene and its methyl derivatives: Toluene, xylene. Toxicology 11:55-63. Jenkins LJ, Jones RA, and Siegel J. 1970. Long-term inhalation screening studies of benzene, toluene, oxylene, and cumene on experimental animals. Toxicol. Appl. Pharmacol. 16:818-823. Kilburn KH, Seidman BC, and Warshaw R. 1985. Neurobehavioral and respiratory symptoms of formaldehyde and xylene exposure in histology technicians. Arch. Environ. Health 40:229-233. Klaucke DN, Johansen M, and Vogt RL. 1982. An outbreak of xylene intoxication in a hospital. Am. J. Ind. Med. 3:173-178. Korsak Z, Sokal JA, Dedyk A, Tomas T, Jedrychowski R. 1988. Toxic effects of combined exposure to toluene and xylene in animals: I. Acute inhalation study. Pol. J. Occup. Med. 1:45-50. Korsak Z, Sokal JA, Wasiela T, Swiercz R. 1990. Toxic effects of acute exposure to particular xylene isomers in animals. Pol. J. Occup. Med. 3:221-226. Kyrklund T, Kjellstrand P, and Haglid K. 1987. Brain lipid changes in rats exposed to xylene and toluene. Toxicology 45:123-133. Loizou GD, Jones K, Akrill P, Dyne D, and Cocker J. 1999. Estimation of the dermal absorption of *m*-xylene vapor in humans using breath sampling and physiologically based pharmacokinetic analysis. Toxicol. Sci. 48:170-179. Marks TA, Ledoux TA, and Moore JA. 1982. Teratogenicity of a commercial xylene mixture in the mouse. J. Toxicol. Environ. Health 9:97-105. Martinez JS, Sala JJG, Vea AM, *et al.* 1989. Renal tubular acidosis with an elevated anion gap in a 'glue sniffer': Letter to editor. Human Toxicol. 8:139-140. Mirkova E, Hinkova L, Vassileva L, *et al.* 1979. Xylene neurotoxicity in pregnant rats and fetuses. Activ. Nerv. Suppl. (Praha) 21:265-268. Mirkova E, Zaikov C, Antov G, Mikhailova A, Khinkova L, Benchev I. 1983. Prenatal toxicity of xylene. J. Hyg. Epidemiol. Microbiol. Immunol. 27:337-343. Molnar J, Paksy KA, and Naray M. 1986. Changes in the rat's motor behavior during 4-hr inhalation exposure to prenarcotic concentrations of benzene and its derivatives. Acta Physiol. Hung. 67:349-354. Morley R, Eccleston DW, Douglas CP, Greville WE, Scott DJ, Anderson J. 1970. Xylene poisoning: A report on one fatal case and two cases of recovery after prolonged unconsciousness. Br. Med. J. 3:442-443. Morvai V, Hudak A, Ungvary G, and Varga B. 1976. ECG changes in benzene, toluene and xylene poisoned rats. Acta Med. Acad. Sci. Hung. 33:275-286. Morvai V, Ungvary G, Herrmann HJ, and Kuhne C. 1987. Effects of quantitative undernourishment, ethanol and xylene on coronary microvessels of rats. Acta Morphol. Hung. 35: 199-206. Moszczynski P, and Lisiewicz J. 1983. Occupational exposure to benzene, toluene and xylene and the T lymphocyte functions. J. Clin. Hematol. Oncol. 13:37-41. Moszczynski P, and Lisiewicz J. 1984. Occupational exposure to benzene, toluene and xylene and the T lymphocyte functions. Haematologia 17:449-453. Muralidhara, and Krishnakumari MK. 1980. Mammalian toxicity of aromex and xylene used in pesticidal formulations. Indian J. Exp. Biol. 18:1148-1151. Nersesian W, Booth H, Hoxie D, Hinckley W, Shehata T. 1985. Illness in office attributed to xylene [Letter]. Occup. Health Saf. 54:88. NTP. 1986. National Toxicology Program technical report on the toxicology and carcinogenesis studies of xylenes (mixed) (60% m-xylene, 14% p-xylene, 9 % o-xylene, and 17% ethylbenzene) (CAS No. 1330-20-7) in F344/N rats and B6C3F1 mice, gavage studies. Research Triangle Park, NC: U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, National Toxicology Program. NTP TR 327. NIH Publication No. 87-2583. Patel JM, Harper C, and Drew RT. 1978. The biotransformation of p-xylene to a toxic aldehyde. Drug Metab. Dispos. 6:368-374. Patel JM, Harper C, Gupta BN, and Drew RT. 1979. Changes in serum enzymes after inhalation exposure of p-xylene. Bull. Environ. Contam. Toxicol. 21:17-24. Pryor GT, Rebert CS, and Howd RA. 1987. Hearing loss in rats caused by inhalation of mixed xylene and styrene. J. Appl. Toxicol. 7:55-61. Pyykko K. 1980. Effects of methylbenzenes on microsomal enzymes in rat liver, kidney and lung. Biochim. Biophys. Acta 633:1-9. Rank J. 1985. Xylene induced feeding and drinking behavior and central adrenergic receptor binding. Neurobehav. Toxicol. Teratol. 7:421-426. Riihimaki V, and Pfaffli P. 1978. Percutaneous absorption of solvent vapors in man. Scand. J. Work Environ. Health 4:73-85. Riihimaki V, and Savolainen K. 1980. Human exposure to m-xylene: Kinetics and acute effects on the central nervous system. Ann. Occup. Hyg. 23:411-422. Roberts FP, Lucas EG, Marsden CD, and Trauer T. 1988. Near-pure xylene causing reversible neuropsychiatric disturbance [Letter]. Lancet ii:273. Rosen MB, Crofton KM, Chernoff, N. 1986. Postnatal evaluation of prenatal exposure to p-xylene in the rat. Toxicol. Lett. 34:223-229. Rosengren LE, Kjellstrand P, Aurell A, and Haglid KG. 1986. Irreversible effects of xylene on the brain after long term exposure: A quantitative study of DNA and the glial cell marker proteins S-100 and GFA. Neurotoxicology 7:121-136. Savolainen H, Vainio H, Helojoki M, and Elovaara E. 1978. Biochemical and toxicological effects of short-term, intermittent xylene inhalation exposure and combined ethanol intake. Arch. Toxicol. 41:195-205. Savolainen K, and Linnavuo M. 1979. Effects of m-xylene on human equilibrium measured with a quantitative method. Acta Pharmacol. Toxicol. 44:315-318. Savolainen H, and Seppalainen AM. 1979. Biochemical and physiological effects of organic solvents on rat axon membranes isolated by a new technique. Neurotoxicology 1:467-477. Savolainen H, Riihimaki V, and Linnoila M. 1979. Effects of short-term xylene exposure on psychophysiological functions in man. Int. Arch. Occup. Environ. Health 44:201-211. Savolainen H, Pfaffli P, Helojoki M, and Tengen M. 1979a. Neurochemical and behavioral effects of long-term intermittent inhalation. Acta Pharmacol. Toxico1. 44:200-207. Savolainen K, and Riihimaki V. 1981. An early sign of xylene effect on human equilibrium. Acta Pharmacol. Toxicol. 48:279-283. Savolainen K, Kekoni J, Riihimaki V, and Laine A. 1984. Immediate effects of m-xylene on the human central nervous system. Arch. Toxicol. Suppl 7:412-417. Savolainen K, Riihimaki V, Luukkonen R, and Muona O. 1985. Changes in the sense of balance correlate with concentrations of m-xylene. Pr. J. Ind. Med. 42:765-769. Sedivec V, and Flek J. 1976. The absorption, metabolism, and excretion of xylenes in man. Int. Arch. Occup. Environ. Health 37:205-217. Shigeta S, Aikawa H, Misawa T, Suzuki K. 1983. Fetotoxicity of inhaled xylene in mice. Teratology 28:22A. Silverman DM, and Schatz RA. 1991. Pulmonary microsomal alterations following short-term low-level inhalation of para-xylene in rats. Toxicology 65:271-281. Smyth HJ, Carpenter CP, Weil CS, Pozzani UC, Striegel JA. 1962. Range-finding toxicity data: List VI. Am. Ind. Hyg. Assoc. J. 23:95-107. Taskinen H, Kyyronen P, Hemminki K, Hoikkala M, Lajunen K, Lindbohm ML. 1994. Laboratory work and pregnancy outcome. J. Occup. Med. 36(3):311-319. Tatrai E, and Ungvary G. 1980. Changes induced by o-xylene inhalations in the rat liver. Acta Med. Acad. Sci. Hung. 37:211-216. Tatrai E, Ungvary G, Cseh IR, *et al.* 1981. The effects of long-term inhalation of ortho-xylene on the liver. Ind. Environ. Xenobiotica. Proceedings of International Conference, Prague, Czechoslovakia, May 27-30, 1980. New York, NY: Springer-Verlag, pp. 293-300. Toftgard R, and Nilsen OG. 1981. Induction of cytochrome P-450 in rat liver after inhalation of aromatic organic solvents. In: Ind. Environ. Xenobiotics, Proceedings of International Conference, Prague, Czechoslovakia, May 27-30, 1980. New York, NY: Springer-Verlag, pp. 307-317. Toftgard R, Nilsen OG, and Gustafsson J-A. 1981. Changes in rat liver microsomal cytochrome P-450 and enzymatic activities after the inhalation of n-hexane, xylene, methyl ethyl ketone and methylchloroform for four weeks. Scand. J. Work Environ. Health 7:31-37. Toftgard R, and Nilsen OG. 1982. Effects of xylene and xylene isomers on cytochrome P-450 and *in vitro* enzymatic activities in rat liver, kidney, and lung. Toxicology 23:197-212. Uchida Y, Nakatsuka H, Ukai H, Watanabe T, Liu YT, Huang MY *et al.* 1993. Symptoms and signs in workers exposed predominantly to xylenes. Int. Arch. Occup. Environ. Health 64:597-605. Ungvary G, Cseh J, Manyai S. Molnar A, Szeberenyi S, and Tatrai E. 1980. Enzyme induction by o-xylene inhalation. Acta Med. Acad. Sci. Hung. 37:115-120. Ungvary G, Tatrai E, Hudak A, Barcza G, Lorincz M. 1980a. Studies on the embryotoxic effects of orthometa- and para-xylene. Toxicology 18.61-74. Ungvary G, Varga B, Horvath E, Tatrai E, Folly G. 1981. Study on the role of maternal sex steroid production and metabolism in the embryotoxicity of para-xylene. Toxicology 19:263-268. Ungvary, G. and Tatrai, E. 1985. On the embryotoxic effects of benzene and its alkyl derivatives in mice, rats, and rabbits. Arch. Toxicol. Suppl. 8:425-430. Ungvary, G. 1985. The possible contibution of industrial chemicals (organic solvents) to the incidence of congenital defects caused by teratogenic drugs and consumer goods – an experimental study. In: Prevention of Physical and Mental Congenital Defects, Part B: Epidemiology, Early Detection and Therapy, and Environmental Factors. Prog. Clin. Biol. Res. 160:295-300. Wimolwattanapun S, Ghosh TK, Mookherjee S, Copeland RL Jr, Pradhan SN. 1987. Effect of inhalation of xylene on intracranial self-stimulation behavior in rat. Neuropharmacology 26: 1629-1632. Wolfe GW. 1988. Subchronic toxicity study in rats with m-xylene. Report by Hazleton Laboratories America, Inc., Rockville MD. Sponsored by Dynamac Corporation, Rockville, MD.